Section 1.1 Limits (minimum homework: 1.1 1-11 odds, 15, 19 and 21)
There is just a bit of review that is needed for this section.
Let us do that review now.
Use the graph of $f(x)$ given below to find the following:

$$
\begin{equation*}
f(-2) \tag{1}
\end{equation*}
$$

$f(5)$
$f(6)$

$f(-2)=0$ the $y$-coordinate of the point $(-2,0)$
$f(1)=2$ the $y$-coordinate of the point $(1,2)$,
the point with a solid circle above $x=1$
$f(5)=10$
$f(6)=$ undefined,
there is no point marked with a solid circle above or below $x=6$

Limit:

- The LIMIT of a function is the $y$-value that a function gets closer to as $x$ approaches some given number.
- Limits describe how a function behaves near a point, instead of at that point.

Let us start by looking at the function: $f(x)=\frac{x^{2}-16}{x-4}$

We should notice that $f(4)=\frac{4^{2}-16}{4-4}=\frac{0}{0}=$ undefined

- The function $f(x)=\frac{x^{2}-16}{x-4}$ is NOT defined when $\mathrm{x}=4$.
- $\mathrm{x}=4$ is not in the domain of $f(x)=\frac{x^{2}-16}{x-4}$.
- We can still talk about the limit of this function at $x=4$, even though 4 is not in the domain of $f(x)=\frac{x^{2}-16}{x-4}$.
- The limit of $f(x)=\frac{x^{2}-16}{x-4}$ as x approaches 4 is a y -value as x gets infinitely near to 4.
- Limits describe how a function behaves near a point, instead of at that point.

Here is graph of $f(x)=\frac{x^{2}-16}{x-4}$ (notice the hole at the point $(4,8)$ ) This hole happens because the function is not defined at $x=4$.


Let me try to show you how to understand limits at a specific value of $x$ graphically.
I will add the appropriate Calculus symbols so we can start to get comfortable with them.

Each of these three statements are asking me to find the same value of y.

- Find the $y$-value that the function $f(x)=\frac{x^{2}-16}{x-4}$ approaches as x gets closer to $\mathrm{x}=4$.
- $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$
- $\lim _{x \rightarrow 4} f(x)$

Let us look at the graph of $f(x)=\frac{x^{2}-16}{x-4}$ and examine points where " x " is close to 4 . We will start with values of x that are less than 4.

My goal is to figure what happens to the $y$-value of points as $x$ gets closer and closer to $x=4$.

First: let $x=3$ ( 3 is an arbitrary number I picked that is less than 4)
$f(3)=\frac{3^{2}-16}{3-4}=7$ (this gives the point $(3,7)$
(you should notice that the point is not too far from the hole in graph)


Next: let $x=3.5$ (3.5 is an arbitrary number I picked that is a bit closer to 4 then $x=3$ was)
$f(3.5)=\frac{3.5^{2}-16}{3.5-4}=7.5$ This creates the point $(3.5,7.5)$. You should notice that the point is even closer to the hole in the graph.


Next: let $x=3.9$ (3.9 is an arbitrary number I picked that is a bit closer to 4 then $x=3.5$ was)
$f(3.9)=\frac{3.9^{2}-16}{3.9-4}=7.9 \quad$ (graphically this gives the point (3.9, 7.9)
(you should notice that the point is even closer to the hole in the graph. In fact the point $(3.9,7.9)$ is so close to the hole that you cannot distinguish the two points.)


Next: let $x=3.99$ (3.99 is an arbitrary number I picked that is a bit closer to 4 then $x=3.9$ was)
$f(3.99)=\frac{3.99^{2}-16}{3.99-4}=7.99 \quad$ (graphically this gives the point (3.99, 7.9) (you should notice that the point is even closer to the hole in the graph. In fact the point $(3.99,7.99)$ is so close to the hole that you cannot distinguish the two points.)


Now I can make a conclusion about the y-value that my points are approaching as the $x$-values get closer to 4 (but remain smaller than 4).

Each of these statements are equivalent:

- As the values of $x$ that are smaller than $x=4$ get closer to $x=4$ the $y$-values get closer to 8 .
- $\lim _{x \rightarrow 4^{-}} \frac{x^{2}-16}{x-4}=8$
- $\lim _{x \rightarrow 4^{-}} f(x)=8$
- The graphical process we just went through is called finding a lefthand limit.
- A left-hand limit is the process of finding the $y$-value that a function gets closer to starting with values of $x$ that are smaller than the given value of $x$.

Let us repeat the process but start with values of $x$ that are larger than $x=4$, and then get progressively closer to $x=4$. (this process is called finding a right-hand limit)

First: let $x=5$ ( 5 is an arbitrary number I picked that is greater than 4) $f(5)=\frac{5^{2}-16}{5-4}=9$ (this gives the point $(5,9)$ (you should notice that the point is not too far from the hole in graph)


Next: let $x=4.5$ (4.5 is an arbitrary number I picked that is a bit closer to 4 then $x=5$ was)
$f(4.5)=\frac{4.5^{2}-16}{4.5-4}=8.5 \quad$ (graphically this gives the point $(4.5,8.5)$
(you should notice that the point is even closer to the hole in the graph)


Next: let $x=4.1$ (4.1 is an arbitrary number I picked that is a bit closer to 4 then $x=4.5$ was)
$f(4.1)=\frac{4.1^{2}-16}{4.1-4}=8.1 \quad$ (graphically this gives the point (4.1, 8.1)
(you should notice that the point is even closer to the hole in the graph. In fact the point $(4.1,8.1)$ is so close to the hole that you cannot distinguish the two points.)


Next: let $x=4.01$ (4.01 is an arbitrary number I picked that is a bit closer to 4 then $x=4.1$ was)
$f(4.01)=\frac{4.01^{2}-16}{4.01-4}=8.01$ (graphically this gives the point $(4.01,8.01)$ (you should notice that the point is even closer to the hole in the graph. In fact the point $(4.01,8.01)$ is so close to the hole that you cannot distinguish the two points.)


Now I can make a conclusion about the y-value that my points are approaching as the $x$-values get closer to 4 (but remain larger than 4).

Each of these statements are equivalent:

- As the values of $x$ that are larger than $x=4$ get closer to $x=4$ the y -values get closer to 8 .
- $\lim _{x \rightarrow 4^{+}} \frac{x^{2}-16}{x-4}=8$
- $\lim _{x \rightarrow 4^{+}} f(x)=8$
- The graphical process we just went through is called finding a right-hand limit.
- A right-hand limit is the process of finding the $y$-value that a function gets closer to starting with values of $x$ that are larger than the given value of $x$.

When: $\lim _{x \rightarrow 4^{+}} f(x)=\lim _{x \rightarrow 4^{-}} f(x)=8$

That is when the left-hand limit and the right-hand limit equal the same number:

We say $\lim _{x \rightarrow 4} f(x)=8$ (we remove the sign that indicates left / righthand limit)

Both left-hand limits and right-hand limits are referred to as one-sided limits.

This symbol $\lim _{x \rightarrow 4} f(x)$ is called a two-sided limit.

Let us do another example of a piecewise defined function:
$f(x)=\left\{\begin{array}{c}3 x, \text { if } x<2 \\ 2 x-1, \text { if } x \geq 2\end{array}\right.$
Here is a graph of $f(x)$

$f(x)=\left\{\begin{array}{c}3 x, \text { if } x<2 \\ 2 x-1, \text { if } x \geq 2\end{array}\right.$

Let us first find $\lim _{x \rightarrow 2^{-}} f(x)$
First: let $\mathrm{x}=1.5$ (1.5 is an arbitrary number I picked that is less than 2 ) $f(1.5)=3(1.5)=$
4.5 plug in top function since 1.5 is less than 2(this gives the point $(1.5,4.5)$ )
(you should notice that the point is not too far from the hole in graph)

$f(x)=\left\{\begin{array}{c}3 x, \text { if } x<2 \\ 2 x-1, \text { if } x \geq 2\end{array}\right.$

Next: let $x=1.9$ (1.9 is an arbitrary number I picked that is less than 2, but closer to 2 than $x=1.5$ )
$f(1.9)=3(1.9)=$
5.7 plug in top function since 1.9 is less than 2(this gives the point (1.9,5.7))
(you should notice that the point is even closer to the hole in graph)

$f(x)=\left\{\begin{array}{c}3 x, \text { if } x<2 \\ 2 x-1, \text { if } x \geq 2\end{array}\right.$

Next: let $x=1.99$ (1.99 is an arbitrary number I picked that is less than 2 , but closer to 2 than $x=1.9$ )
$f(1.99)=3(1.99)=$
5.97 plug in top function since 1.99 is less than 2(this gives the point $(1.99,5.97)$ ) (you should notice that the point is even closer to the hole in graph)

|  |  |  |  |  | 20 |  |  |  | $\gamma$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | - |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | - |  |  |  |  |  |
|  |  |  |  |  | - 10 |  | (2) |  |  |  |  |  |
|  |  |  |  | (1-09 | 9-07) |  | ${ }^{-2,6)}$ |  |  |  |  |  |
|  |  |  |  | (1-99, |  |  | $\bullet$ |  |  |  |  |  |
|  |  |  |  |  |  |  | - $(2,3$ | , ${ }^{\text {) }}$ |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| -20 |  |  | 10 |  | 0 |  |  |  | 10 |  |  | 20 |
|  |  |  |  |  | , |  |  |  |  |  |  |  |
|  |  |  |  |  | , |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | $(-10)$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 1 | -20 |  |  |  |  |  |  |  |

Now I can make a conclusion about the $y$-value that my points are approaching as the $x$-values get closer to 2 (but remain smaller than 2 ).

Each of these statements are equivalent:

- As the values of $x$ that are smaller than $x=2$ get closer to $x=2$ the $y$-values get closer to 6 .
- $\lim _{x \rightarrow 2^{-}} f(x)=6$

Important comments below:

- The graphical process we just went through is called finding a lefthand limit.
- A left-hand limit is the process of finding the $y$-value that a function gets closer to starting with values of $x$ that are smaller than the given value of $x$.

$$
f(x)=\left\{\begin{array}{c}
3 x, \text { if } x<2 \\
2 x-1, \text { if } x \geq 2
\end{array}\right.
$$

Now us first find $\lim _{x \rightarrow 2^{+}} f(x)$

First: let $x=2.5$ (2.5 is an arbitrary number $I$ picked that is greater than 2)

$$
f(2.5)=2(2.5)-1=4
$$

plug in bottom function since 2.5 is greater than 2(this gives the point $(2.5,4)$

You should notice that the point is not too far from the point $(2,3)$


$$
f(x)=\left\{\begin{array}{c}
3 x, \text { if } x<2 \\
2 x-1, \text { if } x \geq 2
\end{array}\right.
$$

Next: let $x=2.1$ (2.1 is an arbitrary number I picked that is greater than 2 , but closer to 2 than 2.5 is)
$f(2.1)=2(2.1)-1=$
3.2 plug in bottom function since 2.1 is greater than 2
this gives the point $(2.1,3.2)$
(you should notice that the point is even closer to the point $(2,3)$

$f(x)=\left\{\begin{array}{c}3 x, \text { if } x<2 \\ 2 x-1, \text { if } x \geq 2\end{array}\right.$

Next: let $x=2.01$ (2.01 is an arbitrary number I picked that is greater than 2 , but closer to 2 than 2.1 is)
$f(2.01)=2(2.01)-1=$
3.02 plug in bottom function since 2.01 is greater than 2
this gives the point $(2.01,3.02)$
(you should notice that the point is even closer to the point $(2,3)$


Now I can make a conclusion about the y-value that my points are approaching as the $x$-values get closer to 2 (but remain larger than 2 ).

Each of these statements are equivalent:

- As the values of $x$ that are larger than $x=2$ get closer to $x=2$ the $y$-values get closer to 3 .
- $\lim _{x \rightarrow 2^{+}} f(x)=3$


## Important comments

- The graphical process we just went through is called finding a right-hand limit.
- A right-hand limit is the process of finding the $y$-value that a function gets closer to starting with values of $x$ that are larger than the given value of $x$.

In this example (both of these are called one-side limits)

- $\lim _{x \rightarrow 2^{-}} f(x)=6$
- $\lim _{x \rightarrow 2^{+}} f(x)=3$

Unlike the first example the left-hand limit and right-hand limit are different numbers.
When this happens. we say
$\lim _{x \rightarrow 2} f(x)=$ does not exist (dne) (this is called a 2-sided limit)

A TWO-SIDED LIMIT ONLY EXISTS WHEN THE LEFT AND RIGHT-HAND LIMITS ARE EQUAL!!

Here is a semi-formal definition of the concept of a two-sided limit:
$\lim _{x \rightarrow a} f(x)=L$
The two sided limit of the function $f(x)$ as x approaches some value x $=a$ is equal to $y=L$, provided the $y$-values get arbitrarily close to $L$ as the x -values get sufficiently close to $\mathrm{x}=\mathrm{a}$.

## Limits at Infinity and Horizontal Asymptotes

We can extend the idea of a limit at a value of $x=a$ to limits at $x=$ infinity.

For example, consider the graph of the function $f(x)=2+\frac{1}{x}$
We can see as the values of $x$ get larger and approach " $\infty$ " the $y$-values of the function $f(x)$ approach $\mathrm{y}=2$.

We say: $\lim _{x \rightarrow \infty} f(x)=2$ (this is a one-sided limit, as there are no numbers greater than $\infty$ )

Similarly, we can see as the values of x get smaller and approach " $-\infty$ " the y -values of the function $f(x)$ also approach $\mathrm{y}=2$.

We say: $\lim _{x \rightarrow-\infty} f(x)=2$ (this is a one-sided limit as there are no numbers less than $-\infty$ )


For example, consider the function $f(x)=\frac{5 x}{\sqrt{x^{2}+1}}$
We can see as the values of $x$ get larger and approach " $\infty$ " the $y$-values of the function $f(x)$ approach $\mathrm{y}=5$.

We say: $\lim _{x \rightarrow \infty} f(x)=5$
Similarly, we can see as the values of x get smaller and approach " $-\infty$ " the y -values of the function $f(x)$ approach $\mathrm{y}=-5$.

We say: $\lim _{x \rightarrow-\infty} f(x)=-5$


For example, consider the function $f(x)=-.01 x^{3}$
We can see as the values of x get larger and approach " $\infty$ " the y -values of the function $f(x)$ don't approach any horizontal line. In fact, the $y$ values get continually smaller.

We say: $\lim _{x \rightarrow \infty} f(x)=-\infty$
We can see as the values of $x$ get smaller and approach " $-\infty$ " the $y$ values of the function $f(x)$ don't approach any horizontal line. In fact, the $y$-values get continually larger.

We say: $\lim _{x \rightarrow-\infty} f(x)=\infty$


So far, we have focused on graphs to find limits. We can also use tables to find limits:

For example: (I will complete the table and write in comments when I record a video)

Complete the table and estimate $f(x)=\lim _{x \rightarrow 2^{-}}(3 x+1)$
(notice the $x$-values in the table are smaller than 2 but get closer and closer to $x=2$ )

| $x$ | 1.5 | 1.9 | 1.99 | 1.999 |
| :---: | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

Complete the table and estimate $f(x)=\lim _{x \rightarrow 2^{+}}(3 x+1)$
(notice the $x$-values in the table are larger than 2 but get closer and closer to $x=2$ )

| $x$ | 2.5 | 2.1 | 2.01 | 2.001 |
| :---: | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

Use the results to estimate: $f(x)=\lim _{x \rightarrow 2}(3 x+1)$

Here is another example of using a table to find limits:
For example: (I will complete the table and write in comments when I record a video)

Complete the table and estimate $f(x)=\lim _{x \rightarrow-3^{-}} \frac{|x+3|}{x+3}+x$
(notice the $x$-values in the table are smaller than 2 but get closer and closer to $x=2$ )

| $x$ | -3.5 | -3.1 | -3.01 | -3.001 |
| :---: | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

Complete the table and estimate $f(x)=\lim _{x \rightarrow-3^{+}} \frac{|x+3|}{x+3}+x$
(notice the $x$-values in the table are larger than 2 but get closer and closer to $x=2$ )

| $x$ | -2.5 | -2.9 | -2.99 | -2.999 |
| :---: | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

Use the results to estimate: $f(x)=\lim _{x \rightarrow 3} \frac{|x+3|}{x+3}+x$

Here is another example of using a table to find limits (this time at $x=$ $\infty)$ :

For example: (I will complete the table and write in comments when I record a video)

Complete the table and estimate $f(x)=\lim _{x \rightarrow \infty} \frac{8 x+6}{2 x-1}$
(notice the $x$-values in the table are smaller than $\infty$ but get closer and closer to $x=\infty$ )
(this must be a one-sided limit as there no numbers I can use that are larger than infinity)

| $x$ | 100 | 1000 | 10,000 | 100,000 |
| :---: | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

Here is another example of using a table to find limits (this time at $x=$ $\infty$ ):

For example: (I will complete the table and write in comments when I record a video)

Complete the table and estimate $f(x)=\lim _{x \rightarrow \infty}(-2 x+24)$
(notice the $x$-values in the table are smaller than $\infty$ but get closer and closer to $x=\infty$ )
(this must be a one-sided limit as there no numbers I can use that are larger than infinity)

| $x$ | 100 | 1000 | 10,000 | 100,000 |
| :---: | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

Here is another example of using a table to find limits (this time at $x=$ $\infty$ ):

For example: (I will complete the table and write in comments when I record a video)

Complete the table and estimate

$$
f(x)=\lim _{x \rightarrow \infty}\left(\frac{-3 x^{2}+1}{x-4}\right)
$$

(notice the $x$-values in the table are smaller than $\infty$ but get closer and closer to $x=\infty$ )
(this must be a one-sided limit as there no numbers I can use that are larger than infinity)

| $x$ | 100 | 1000 | 10,000 |
| :---: | :--- | :--- | :--- |
| $f(x)$ |  |  |  |

(minimum homework: 1.1 1-11 odds, 15,19 and 21)

1) Below is a graph of the function $f(x)$.


Find the following
a) $f(1)$
b) $f(-1)$
c) $f(4)$
d) $\lim _{x \rightarrow 1^{-}} f(x)$
e) $\lim _{x \rightarrow 1^{+}} f(x)$
f) $\lim _{x \rightarrow 1} f(x)$
g) $\lim _{x \rightarrow 4^{-}} f(x)$
h) $\lim _{x \rightarrow 4^{+}} f(x)$
i) $\lim _{x \rightarrow 4} f(x)$
(minimum homework: 1.1 1-11 odds, 15,19 and 21)
2) Below is a graph of the function $f(x)$.


Find the following:
a) $f(1)$
b) $f(-1)$
c) $f(4)$
d) $\lim _{x \rightarrow 1^{-}} f(x)$
e) $\lim _{x \rightarrow 1^{+}} f(x)$
f) $\lim _{x \rightarrow 1} f(x)$
g) $\lim _{x \rightarrow 4-} f(x)$
h) $\lim _{x \rightarrow 4^{+}} f(x)$
i) $\lim _{x \rightarrow 4} f(x)$
(minimum homework: 1.1 1-11 odds, 15,19 and 21)
3) Below is a graph of the function $f(x)$.


Find the following
a) $f(3)$
b) $f(4)$
c) $f(-1)$
d) $\lim _{x \rightarrow-1^{-}} f(x)$
e) $\lim _{x \rightarrow-1^{+}} f(x)$
f) $\lim _{x \rightarrow-1} f(x)$
g) $\lim _{x \rightarrow 3^{-}} f(x)$
h) $\lim _{x \rightarrow 3^{+}} f(x)$
i) $\lim _{x \rightarrow 3} f(x)$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
4) Below is the graph of a function $y=f(x)$.


Find the following
a) $f(0)$
b) $f(4)$
c) $f(15)$
d) $\lim _{x \rightarrow 4^{-}} f(x)$
e) $\lim _{x \rightarrow 4^{+}} f(x)$
f) $\lim _{x \rightarrow 4} f(x)$
g) $\lim _{x \rightarrow 0^{-}} f(x)$
h) $\lim _{x \rightarrow 0^{+}} f(x)$
i) $\lim _{x \rightarrow 0} f(x)$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
5) Below is a graph of the function $f(x)$.


Find the following:
a) $f(0)$
b) $f(3)$
c) $f(15)$
d) $\lim _{x \rightarrow 3^{-}} f(x)$
e) $\lim _{x \rightarrow 3^{+}} f(x)$
f) $\lim _{x \rightarrow 3} f(x)$
g) $\lim _{x \rightarrow 0^{-}} f(x)$
h) $\lim _{x \rightarrow 0^{+}} f(x)$
i) $\lim _{x \rightarrow 0} f(x)$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
6) Below is a graph of the function $f(x)$.


Find the following:
a) $f(5)$
b) $f(-3)$
c) $f(4)$
d) $\lim _{x \rightarrow-3^{-}} f(x)$
e) $\lim _{x \rightarrow-3^{+}} f(x)$
f) $\lim _{x \rightarrow-3} f(x)$
g) $\lim _{x \rightarrow 5^{-}} f(x)$
h) $\lim _{x \rightarrow 5^{+}} f(x)$
i) $\lim _{x \rightarrow 5} f(x)$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
7) Below is a graph of the function $f(x)$. Find the value of each limit (if it exists)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
8) Below is a graph of the function $f(x)$. Find the value of each limit (if it exists)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
(minimum homework: 1.1 1-11 odds, 15,19 and 21)
9) Below is a graph of the function $f(x)$. Find the value of each limit (if it exists)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
10) Below is a graph of the function $f(x)$. Find the value of each limit (if it exists)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
(minimum homework: 1.1 1-11 odds, 15,19 and 21)
11) Below is a graph of the function $f(x)$. Find the value of each limit (if it exists)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
12) Below is a graph of the function $f(x)$. Find the value of each limit (if it exists)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$

Answers: a) $\lim _{x \rightarrow \infty} f(x)=-\infty$
b) $\lim _{x \rightarrow-\infty} f(x)=\infty$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
13) Below is a graph of the function $f(x)$. Find the value of each limit (if it exists)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$
14) Below is a graph of the function $f(x)$. Find the value of each limit (if it exists)

a) $\lim _{x \rightarrow \infty} f(x)$
b) $\lim _{x \rightarrow-\infty} f(x)$

Answers: a) $\lim _{x \rightarrow \infty} f(x)=-\infty$
b) $\lim _{x \rightarrow-\infty} f(x)=-\infty$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
\#15-26: Complete the table(s) and find the requested limits.
15) $f(x)=3 x+5$, find
a) $\lim _{x \rightarrow 2-}(3 x+5)$

| $x$ | 1.5 | 1.9 | 1.99 | 1.999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

b) $\lim _{x \rightarrow 2+}(3 x+5)$

| $x$ | 2.5 | 2.1 | 2.01 | 2.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

c) Use the results from part $a$ and $b$ to find: $\lim _{x \rightarrow 2}(3 x+5)$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
16) $f(x)=2 x-3$
a) $\lim _{x \rightarrow 4-}(2 x-3)$

| $x$ | 3.5 | 3.9 | 3.99 | 3.999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

b) $\lim _{x \rightarrow 4^{+}} f(x)$

| $x$ | 4.5 | 4.1 | 4.01 | 4.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

c) Use the results from part $a$ and $b$ to find: $\lim _{x \rightarrow 4} f(x)$

Answer:
a) $\lim _{x \rightarrow 4-}(2 x-3)$

| $x$ | 3.5 | 3.9 | 3.99 | 3.999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 4 | 4.8 | 4.98 | 4.998 |

b) $\lim _{x \rightarrow 4^{+}} f(x)$

| $x$ | 4.5 | 4.1 | 4.01 | 4.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 6 | 5.2 | 5.02 | 5.002 |

c) Use the results from part a and b to find: $\lim _{x \rightarrow 4} f(x)=5$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
17) $f(x)=\frac{x+2}{x-1}$ find
a) $\lim _{x \rightarrow 2-} \frac{x+2}{x-1}$

| $x$ | 1.5 | 1.9 | 1.99 | 1.999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

b) $\lim _{x \rightarrow 2+} \frac{x+2}{x-1}$

| $x$ | 2.5 | 2.1 | 2.01 | 2.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

c) Use the results from part a and b to find: $\lim _{x \rightarrow 2} \frac{x+2}{x-1}$
(minimum homework: 1.1 1-11 odds, 15,19 and 21)
18) $\mathrm{f}(\mathrm{x})=\frac{x+5}{x+2}$
a) $\lim _{x \rightarrow 1-} \frac{x+5}{x+2}$

| $x$ | .5 | .9 | .99 | .999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

b) $\lim _{x \rightarrow 1^{+}} \frac{x+5}{x+2}$

| $x$ | 1.5 | 1.1 | 1.01 | 1.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

c) Use the results from part $a$ and $b$ to find: $\lim _{x \rightarrow 1} \frac{x+5}{x+2}$

Answer:
a) $\lim _{x \rightarrow 1-} \frac{x+5}{x+2}$

| $x$ | .5 | .9 | .99 | .999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 2.2 | 2.0344828 | 2.0033445 | 2.0003334 |

b) $\lim _{x \rightarrow 1^{+}} \frac{x+5}{x+2}$

| $x$ | 1.5 | 1.1 | 1.01 | 1.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 1.8571429 | 1.9677419 | 1.9966777 | 1.9996668 |

c) Use the results from part a and b to find: $\lim _{x \rightarrow 1} \frac{x+5}{x+2}=2$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
19) $f(x)=\frac{\sqrt{x}-3}{x-9}$, find
a) $\lim _{x \rightarrow 9-} \frac{\sqrt{x}-3}{x-9}$

| $x$ | 8.5 | 8.9 | 8.99 | 8.999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

b) $\lim _{x \rightarrow 9+} \frac{\sqrt{x}-3}{x-9}$

| $x$ | 9.5 | 9.1 | 9.01 | 9.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

c) Use the results from part a and b to find: $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
20) $f(x)=\frac{\sqrt{x}-2}{x-4}$
a) $\lim _{x \rightarrow 4-} \frac{\sqrt{x}-2}{x-4}$

| $x$ | 3.5 | 3.9 | 3.99 | 3.999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

b) $\lim _{x \rightarrow 4^{+}} \frac{\sqrt{x}-2}{x-4}$

| $x$ | 4.5 | 4.1 | 4.01 | 4.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

c) Use the results from part $a$ and $b$ to find: $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$

Answer:
a) $\lim _{x \rightarrow 4-} \frac{\sqrt{x}-2}{x-4}$

| $x$ | 3.5 | 3.9 | 3.99 | 3.999 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | .25834261 | .25158234 | .25015645 | .25001563 |

b) $\lim _{x \rightarrow 4^{+}} \frac{\sqrt{x}-2}{x-4}$

| $x$ | 4.5 | 4.1 | 4.01 | 4.001 |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | .24264069 | .24845673 | .24984395 | .24998438 |

c) Use the results from part a and b to find: $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} 0.25$
(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
21) $f(\mathrm{x})=\frac{2 x^{2}+3 x+5}{x^{2}+4 x-5}$

Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{2 x^{2}+3 x+5}{x^{2}+4 x-5}$

| $x$ | 100 | 1000 | 100,000 | $1,000,000$ |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

22) $f(x)=\frac{6 x^{2}+2 x+5}{3 x^{2}+4 x-4}$

Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{6 x^{2}+2 x+5}{3 x^{2}+4 x-4}$,

| $x$ | 100 | 1000 | 100,000 | $1,000,000$ |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

Answer:

Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{6 x^{2}+2 x+5}{3 x^{2}+4 x-4}=2$

| $x$ | 100 | 1000 | 100,000 | $1,000,000$ |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 1.9806882 | 1.998007 | 1.99998 | 1.999998 |

(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
23) $f(x)=\frac{6 x^{3}-x^{2}+2 x+5}{3 x^{4}+4 x^{2}-5 x}$

Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{6 x^{3}-x^{2}+2 x+5}{3 x^{4}+4 x^{2}-5 x}$

| $x$ | 100 | 1000 | 100,000 | $1,000,000$ |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

24) $f(x)=\frac{2 x^{2}+2 x-5}{3 x^{4}-5 x+2}$

Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{6 x^{3}-x^{2}+2 x+5}{3 x^{4}+4 x^{2}-5 x}$

| $x$ | 100 | 1000 | 100,000 |
| :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |

Answer:
24) $\mathrm{f}(\mathrm{x})=\frac{2 x^{2}+2 x-5}{3 x^{4}-5 x+2}$

Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{2 x^{2}+2 x-5}{3 x^{4}-5 x+2}=0$

| $x$ | 100 | 1000 | 100,000 |
| :--- | :--- | :--- | :--- |
| $f(x)$ | .00006731 | .00000066733 | .0000000000667 |

(minimum homework: 1.1 1-11 odds, 15, 19 and 21)
25) $f(x)=\frac{6 x^{5}-x^{2}+2 x+5}{3 x^{4}+4 x^{2}-5 x}$

Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{6 x^{5}-x^{2}+2 x+5}{3 x^{4}+4 x^{2}-5 x}$

| $x$ | 100 | 1000 | 10000 |  |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

26) $f(x)=\frac{2 x^{7}+2 x^{3}-5}{3 x^{4}-5 x}$

Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{2 x^{7}+2 x^{3}-5}{3 x^{4}-5 x}$

| $x$ | 100 | 1000 | 10000 |  |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ |  |  |  |  |

Answer:
Complete the table to estimate $\lim _{x \rightarrow \infty} \frac{2 x^{7}+2 x^{3}-5}{3 x^{4}-5 x}=\infty$

| $x$ | 100 | 1000 | 10000 |  |
| :--- | :--- | :--- | :--- | :--- |
| $f(x)$ | 666667.78 | 666666667 | 666670000000000 |  |

